Lippincott Procedures Training Tour for General Users - NetLearning LMS Users
Lippincott Procedures

You can use Lippincott Procedures to:

- search for procedures easily and quickly, regardless of your computer experience
- find accurate, up-to-date information at the point of care
- gain quick access to the procedures, checklists, images, and videos you need.
- complete assigned skills competency tests.
Welcome
Browse options
Browse options

12- or 24-hour timed urine collection
- 12-lead electrocardiogram (ECG)
- 12-lead electrocardiogram (ECG), pediatric
- 24-hour timed urine collection, pediatric
- 24-hour timed urine collection using a pediatric urine collection bag, pediatric female
- 24-hour timed urine collection using a pediatric urine collection bag, pediatric male
- 24-hour timed urine collection, pediatric
- Abdominal binder application
- Abdominal girth measurement, neonatal
- Abruptio placentae patient care
- Accidental exposure to blood or body fluids, OR
- Active hallucinations patient care
- Acute dystonic reaction assessment and care
- Admission
 - Admission of a patient with a history of drug abuse
 - Admission to floor, pediatric
 - Admission to intensive care unit
 - Admission to intensive care unit, pediatric
 - Admission, assisting with adjustment, long-term care
 - Admission, long-term care
- Advance directives
 - Advance directives
 - Advance directives, long-term care
 - Advance directives, neonatal
Search options

- Mechanical ventilation, setup, long-term care
 There are different makes and models of mechanical ventilators; some mechanical ventilators have more capabilities than others, but all

- High-frequency ventilator use, neonatal
 High-frequency ventilation, a type of mechanical ventilation, is used to treat respiratory failure in full-term and preterm neonates. (See

- Mechanical ventilation, positive pressure
 A mechanical ventilator moves air in and out of a patient’s lungs. Although the equipment serves to ventilate a

- Mechanical ventilation, monitoring and care, long-term care
 A mechanical ventilator assists with or completely supports a resident’s respiratory effort. Although the equipment is

- Mechanical ventilation, positive pressure, pediatric
 The purpose of mechanical, or positive-pressure, ventilation is to promote gas exchange in the lungs by producing positive

- Weaning a patient from a ventilator
 Successful weaning from a ventilator depends on the patient’s ability to breathe on his own, which means that he must have a spontaneous

- Weaning a patient from a ventilator, neonatal
 Successful weaning from a ventilator depends on the neonate’s ability to breathe on his own, which means that he must have a

- Tracheostomy and ventilator speaking valve use
 Patients with a conventional tracheostomy tube can’t speak because the cuffed tracheostomy tube that directs air into the lungs
Viewing a procedure

12-lead electrocardiogram (ECG)

Revised: April 05, 2013

Introduction

One of the most valuable and frequently used diagnostic tools, electrocardiography displays the heart’s electrical activity as waveforms. Impulses moving through the heart’s conduction system create electric currents that can be monitored on the body’s surface. Electrodes attached to the skin can detect these electric currents and transmit them to an instrument that produces a record (the electrocardiogram [ECG]) of cardiac activity.

An ECG can be used to identify myocardial ischemia and infarction, rhythm and conduction disturbances, chamber enlargement, electrolyte imbalances, and drug toxicity. A standard 12-lead ECG uses a series of electrodes placed on the extremities and the chest wall to assess the heart from 12 different views (leads). The 12 leads consist of three standard bipolar limb leads (designated I, II, III), three unipolar augmented leads (aVR, aVL, aVF), and six unipolar precordial leads (V1 to V6). The limb leads and augmented leads show the heart from the frontal plane. The precordial leads show the heart from the horizontal plane.

The ECG device measures and averages the differences among the electric potential of the electrode sites for each lead and graphs them over time. This creates the standard ECG complex, made up of P-QRS-T. The P wave represents atrial depolarization; the QRS complex, ventricular depolarization; and the T wave, ventricular repolarization. (See Reviewing ECG waveforms and components.)
Viewing a procedure

12-lead electrocardiogram (ECG)

Introduction

One of the most valuable and frequently used diagnostic tools, electrocardiography displays the heart’s electrical activity as waveforms. Impulses moving through the heart's conduction system create electric currents that can be monitored on the body's surface. Electrodes attached to the skin can detect these electric currents and transmit them to an instrument that produces a record (the electrocardiogram [ECG]) of cardiac activity.

An ECG can be used to identify myocardial ischemia and infarction, rhythm and conduction disturbances, chamber enlargement, electrolyte imbalances, and drug toxicity.

A standard 12-lead ECG uses a series of electrodes placed on the extremities and the chest wall to assess the heart from 12 different views (leads). The 12 leads consist of three standard bipolar limb leads (designated I, II, III), three unipolar augmented leads (aV1, aV2, aV3), and six unipolar precordial leads (V1 to V6). The limb leads and augmented leads show the heart from the frontal plane. The precordial leads show the heart from the horizontal plane.

The ECG device measures and averages the differences among the electric potential of the electrode sites for each lead and graphs them over time. This creates the standard ECG complex, made up of P, QRS, T. The P wave represents atrial depolarization; the QRS complex, ventricular depolarization; and the T wave, ventricular repolarization. (See Reviewing ECG waveforms and components.)
Navigating the tabs

12-lead electrocardiogram (ECG)

Objective: To perform electrocardiography according to the standard of care.

- Verify the doctor's order.
- Gather the appropriate equipment.
- Perform hand hygiene.
- Confirm the patient's identity using at least two patient identifiers.
- Explain the procedure to the patient.
- Provide privacy.
- Assist the patient to a supine position in the center of the bed with his arms at his sides.
- Expose necessary areas on the patient's chest, arms, and legs, and identify appropriate electrode sites.
- Clip the electrode sites if they're excessively hairy.
- Clean excess oil or other substances from the skin.
Navigating the tabs

Procedure: 12-lead electrocardiogram (ECG)

- Verify the doctor's order.
- Gather the appropriate equipment.
- Perform hand hygiene.
- Confirm the patient's identity.
- Explain the procedure to the patient.
- Provide privacy.
- Choose appropriate electrode sites.
- Clip electrode sites, if excessively hairy.
- Clean the skin.
- Apply disposable electrodes at the proper sites.
- Connect the leadwires to the electrodes.
- Turn on the ECG and ensure that the paper speed is set at the standard 25 mm/sec.
- If any part of the waveform height extends beyond the paper as the ECG is recorded, adjust normal standardization to half-standardization.
- Tell the patient to relax and to breathe normally.
Navigating the tabs
Navigating the tabs

- Apply disposable electrodes to the patient's wrist and to the medial aspects of his ankles. (See Positioning chest electrodes.) Apply the pre-gelled electrode directly to the prepared site, as recommended by the manufacturer's instructions. To guarantee the best connection to the leadwire, position disposable electrodes on the patient's legs with the lead connection pointing superiorly.

- Apply a pre-gelled electrode at each electrode position on the patient's chest. If the patient is a woman, be sure to place the chest electrodes below the breast tissue. In a large-breasted woman, you may need to displace the breast tissue laterally.

- Connect the leadwires to the electrodes.

- You'll see that the tip of each leadwire is lettered and color-coded for easy identification. The white or RA leadwire goes to the right arm; the green or RL leadwire, to the right leg; the red or LL leadwire, to the left leg; the black or LA leadwire, to the left arm; and the brown or V1 to V6 leadwires to the chest electrodes.

- Check to see that the paper speed selector is set to the standard 25 mm/sec and that the machine is set to full voltage. The machine will record a normal standardization mark—a square that's the height of two large squares or 10 small squares—on the recording paper.

- If any part of the waveform height extends beyond the paper when you record the ECG, adjust the normal standardization to half-standardization. Note this adjustment on the ECG strip because this will need to be considered in interpreting the results.

- Now you're ready to begin the recording. Ask the patient to relax and to breathe normally. Tell him to lie still and not to talk when you record his ECG. Then press the AUTO OF START button. Observe the tracing quality. The machine will record all 12 leads automatically, recording three consecutive leads simultaneously. Some machines have a display screen, allowing you to preview waveforms before the machine records them on paper.
Navigating the tabs
Additional options
Additional options

Nursing
- Behavioral Health
- Critical Care
- Emergency
- Long-Term Care
- Maternal-Neonatal
- Medical-Surgical
- Neonatal Critical Care
- Oncology
- Pediatric
- Pediatric Critical Care
- Perioperative

Available Procedures
- 12- or 24-hour timed urine collection
- 12-lead electrocardiogram (ECG)
- 12-lead electrocardiogram (ECG), pediatric
- 15-lead electrocardiogram (ECG)
- 18-lead electrocardiogram (ECG)
- 2-hour timed urine collection, pediatric
- 24-hour timed urine collection using a pediatric urine collection bag, pediatric female
- 24-hour timed urine collection using a pediatric urine collection bag, pediatric male
- 24-hour timed urine collection, pediatric
- Abdominal binder application
- Abdominal girth measurement, neonatal
- Abruptio placenta patient care
- Accidental exposure to blood or body fluids, OR
- Active hallucinations patient care
- Acute dystonic reaction assessment and care
- Admission
- Admission of a patient with a history of drug abuse
- Admission to floor, pediatric
- Admission to intensive care unit
- Admission to intensive care unit, pediatric
- Admission, assisting with adjustment, long-term care
- Admission, long-term care
- Advance directives
- Advance directives, long-term care
- Advance directives, neurology
Accessing Procedures in HealthcareSource NetLearning

Launch Course

Admission to intensive care unit, pediatric

You may review the course as many times as you like. Once you pass the posttest, you will be finished with this course.
Admission to intensive care unit, pediatric

Introduction

Critically ill children are typically admitted to the intensive care unit (ICU) as a result of traumatic injury or an acute or a chronic medical condition. A child may also be admitted for monitoring after a complex surgical procedure or for complications resulting from surgery. Premature neonates and neonates with congenital anomalies, perinatal hypoxia, low birth weight, or other conditions associated with gestation and the birth process are also candidates for ICU admission.

The sights and sounds of the ICU make it a highly stressful place for children and their parents or guardian. Their impressions formed during admission can affect the child's medical condition, psychological status, recuperation, and future hospitalizations.

The Joint Commission requires that each patient have an admission assessment performed by a registered nurse within 24 hours. You must take into account the stress level of the child and his parents or guardian and pay special attention to their needs and their understanding of the admission process. Principles of family-centered care should be used during this time and throughout the course of the child's hospitalization.

Equipment

- Bed, crib, Isolette, or radiant warmer
Competency Tests

The content you chose to launch should be in a new window. When you are finished reviewing the content please use one of the links below to return to the myNetLearning.

If the content did not launch use the link below.
Lippincott Procedures
For Further Assistance

■ Lippincott Procedures Technical Support—
 — Monday through Thursday, 8 AM to Midnight EST;
 — Friday, 8 AM to 7 PM EST;
 — Sunday, 4 PM to Midnight EST at:
 ■ 1-800-468-1128 option 4 or LNS-Support@wolterskluwer.com.

■ NetLearning questions should be directed to your facility’s NetLearning Administrator

■ Questions from NetLearning Administrators should be directed to HealthcareSource:
 - Monday through Friday 7:00 AM to 7:00 PM Eastern at 1-877-284-4357.
 - By email, write to us any time at netlearning.helpdesk@healthcaresource.com