Lippincott Procedures
Training Tour for General Users
Lippincott Procedures

You can use Lippincott Procedures to:

- search for procedures easily and quickly, regardless of your computer experience
- find accurate, up-to-date information at the point of care
- gain quick access to the procedures, checklists, images, and videos you need.
- complete assigned skills competency tests.
Welcome
Search options...
Browse options
Browse options

12- or 24-hour timed urine collection
12-lead electrocardiogram (ECG)
12-lead electrocardiogram (ECG), pediatric
15-lead electrocardiogram (ECG)
18-lead electrocardiogram (ECG)
2-hour timed urine collection, pediatric
24-hour timed urine collection using a pediatric urine collection bag, pediatric female
24-hour timed urine collection using a pediatric urine collection bag, pediatric male
24-hour timed urine collection, pediatric
Abdominal binder application
Abdominal girth measurement, neonatal
Abruptio placenta patient care
Accidental exposure to blood or body fluids, OR
Active hallucinations patient care
Acute dystonic reaction assessment and care
Admission
Admission of a patient with a history of drug abuse
Admission to floor, pediatric
Admission to intensive care unit
Admission to intensive care unit, pediatric
Admission, assisting with adjustment, long-term care
Admission, long-term care
Advance directives
Advance directives, long-term care
Advance directives, neonatal
Search options

Lippincott Procedures

- **Nursing**
- **Respiratory Therapy**

Procedures (182)
- Checklists (58)
- Quick Lists (51)
- Images (13)
- Videos (2)

Sort by:
- Relevance

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Show All</td>
</tr>
<tr>
<td></td>
<td>Admissions</td>
</tr>
<tr>
<td></td>
<td>Behavioral Health</td>
</tr>
<tr>
<td></td>
<td>Critical Care</td>
</tr>
<tr>
<td></td>
<td>Emergency</td>
</tr>
<tr>
<td></td>
<td>Long-Term Care</td>
</tr>
<tr>
<td></td>
<td>Maternal-Neonatal</td>
</tr>
<tr>
<td></td>
<td>Medical-Scientific</td>
</tr>
</tbody>
</table>

Search Results for: ventilator

- **High-frequency ventilation, neonatal**
 - High-frequency ventilation, a type of mechanical ventilation, is used to treat respiratory failure in full-term and preterm neonates. (See)

- **Mechanical ventilation, setup, long-term care**
 - There are different makes and models of mechanical ventilators; some mechanical ventilators have more capabilities than others, but all

- **Mechanical ventilation, positive pressure**
 - A mechanical ventilator moves air in and out of a patient's lungs. Although the equipment serves to ventilate a

- **Mechanical ventilation, monitoring and care, long-term care**
 - A mechanical ventilator assists with or completely supports a resident's respiratory effort. Although the equipment is

- **Mechanical ventilation, positive pressure, pediatric**
 - The purpose of mechanical, or positive-pressure, ventilation is to promote gas exchange in the lungs by producing positive intrathoracic

- **Weaning a patient from a ventilator**
 - Successful weaning from a ventilator depends on the patient's ability to breathe on their own, which means that he must have a spontaneous

- **Weaning a patient from a ventilator, neonatal**
 - Successful weaning from a ventilator depends on the neonate's ability to breathe on their own, which means that he must have a

Tracheostomy and ventilator speaking valve use

Patients with a conventional tracheostomy tube can't speak because the cuffed tracheostomy tube that directs air into the lungs
Viewing a procedure

12-lead electrocardiogram (ECG)

Revised: April 05, 2013

Introduction

One of the most valuable and frequently used diagnostic tools, electrocardiography displays the heart's electrical activity as waveforms. Impulses moving through the heart's conduction system create electric currents that can be monitored on the body's surface. Electrodes attached to the skin can detect these electric currents and transmit them to an instrument that produces a record (the electrocardiogram [ECG]) of cardiac activity.

An ECG can be used to identify myocardial ischemia and infarction, rhythm and conduction disturbances, chamber enlargement, electrolyte imbalances, and drug toxicity.

A standard 12-lead ECG uses a series of electrodes placed on the extremities and the chest wall to assess the heart from 12 different views (leads). The 12 leads consist of three standard bipolar limb leads (designated I, II, III), three unipolar augmented leads (aVR, aVL, aVF), and six unipolar precordial leads (V1 to V6). The limb leads and augmented leads show the heart from the frontal plane. The precordial leads show the heart from the horizontal plane.

The ECG device measures and averages the differences among the electric potential of the electrode sites for each lead and graphs them over time. This creates the standard ECG complex, made up of P-QRS-T. The P wave represents atrial depolarization; the QRS complex, ventricular depolarization; and the T wave, ventricular repolarization. (See Reviewing ECG waveforms and components.)
Viewing a procedure

12-lead electrocardiogram (ECG)

Introduction

One of the most valuable and frequently used diagnostic tools, electrocardiography displays the heart's electrical activity as waveforms. Impulses moving through the heart's conduction system create electric currents that can be monitored on the body's surface. Electrodes attached to the skin can detect these electric currents and transmit them to an instrument that produces a record (the electrocardiogram [ECG]) of cardiac activity.

An ECG can be used to identify myocardial ischemia and infarction, rhythm and conduction disturbances, chamber enlargement, electrolyte imbalances, and drug toxicity. A standard 12-lead ECG uses a series of electrodes placed on the extremities and the chest wall to assess the heart from 12 different views (leads). The 12 leads consist of three standard bipolar limb leads (designated I, II, III), three unipolar augmented leads (aVR, aVL, aVF), and six unipolar precordial leads (V1 to V6). The limb leads and augmented leads show the heart from the frontal plane. The precordial leads show the heart from the horizontal plane.

The ECG device measures and averages the differences among the electric potential of the electrode sites for each lead and graphs them over time. This creates the standard ECG complex, made up of P-QRS-T. The P wave represents atrial depolarization; the QRS complex, ventricular depolarization; and the T wave, ventricular repolarization. (See Reviewing ECG waveforms and components.)
Navigating the tabs

12-lead electrocardiogram (ECG)

Objective: To perform electrocardiography according to the standard of care.

- Verify the doctor’s order.
- Gather the appropriate equipment.
- Perform hand hygiene.
- Confirm the patient’s identity using at least two patient identifiers.
- Explain the procedure to the patient.
- Provide privacy.
- Assist the patient to a supine position in the center of the bed with his arms at his sides.
- Expose necessary areas on the patient’s chest, arms, and legs, and identify appropriate electrode sites.
- Clip the electrode sites if they’re excessively hairy.
- Clean excess oil or other substances from the skin.
Navigating the tabs

12-lead electrocardiogram (ECG)

- Verify the doctor's order.
- Gather the appropriate equipment.
- Perform hand hygiene.
- Confirm the patient's identity.
- Explain the procedure to the patient.
- Provide privacy.
- Choose appropriate electrode sites.
- Clip electrode sites, if excessively hairy.
- Clean the skin.
- Apply disposable electrodes at the proper sites.
- Connect the leadwires to the electrodes.
- Turn on the ECG and ensure that the paper speed is set at the standard 25 mm/sec.
- If any part of the waveform height extends beyond the paper as the ECG is recorded, adjust normal standardization to half-standardization.
- Tell the patient to relax and to breathe normally.
Navigating the tabs
Navigating the tabs

- Apply disposable electrodes to the patient's wrist and to the medial aspects of his ankles. (See *Positioning chest electrodes*) Apply the pre-gelled electrode directly to the prepared site, as recommended by the manufacturer's instructions. To guarantee the best connection to the leadwire, position disposable electrodes on the patient's legs with the lead connection pointing superiorly.

- Apply a pre-gelled electrode at each electrode position on the patient's chest. If the patient is a woman, be sure to place the chest electrodes below the breast tissue. In a large-breasted woman, you may need to displace the breast tissue laterally.

- Connect the leadwires to the electrodes.

- You'll see that the tip of each leadwire is lettered and color-coded for easy identification. The white or RA leadwire goes to the right arm; the green or RL leadwire, to the right leg; the red or LL leadwire, to the left leg; the black or LA leadwire, to the left arm; and the brown or vs to vs leadwires to the chest electrodes.

- Check to see that the paper speed selector is set to the standard 25 mm/sec and that the machine is set to full voltage. The machine will record a normal standardization mark—a square that's the height of two large squares or 10 small squares—on the recording paper.

- If any part of the waveform height extends beyond the paper when you record the ECG, adjust the normal standardization to half-standardization. Note this adjustment on the ECG strip because this will need to be considered in interpreting the results.

- Now you're ready to begin the recording. Ask the patient to relax and to breathe normally. Tell him to lie still and not to talk when you record his ECG. Then press the AUTO START button. Observe the tracing quality. The machine will record all 12 leads automatically, recording three consecutive leads simultaneously. Some machines have a display screen, allowing you to preview waveforms before the machine records them on paper.
Navigating the tabs
Additional options

12-lead electrocardiogram (ECG)

Introduction

One of the most valuable and frequently used diagnostic tools, electrocardiography displays the heart's electrical activity as waveforms. Impulses moving through the heart's conduction system create electric currents that can be monitored on the body's surface. Electrodes attached to the skin can detect these electric currents and transmit them to an instrument that produces a record (the electrocardiogram [ECG]) of cardiac activity.

An ECG can be used to identify myocardial ischemia and infarction, rhythm and conduction disturbances, chamber enlargement, electrolyte imbalances, and drug toxicity.

A standard 12-lead ECG uses a series of electrodes placed on the extremities and the chest wall to assess the heart from 12 different views (leads). The 12 leads consist of three standard bipolar limb leads (designated I, II, III), three unipolar augmented leads (aV1, aV2, aV3), and six unipolar precordial leads (V1 to V6). The limb leads and augmented leads show the heart from the frontal plane. The precordial leads show the heart from the horizontal plane.

The ECG device measures and averages the differences among the electric potential of the electrode sites for each lead and graphs them over time. This creates the standard ECG complex, made up of P-QRS-T. The P wave represents atrial depolarization; the QRS complex, ventricular depolarization; and the T wave, ventricular repolarization. (See *Reviewing ECG waveforms and components*.)
Competency Testing

All Nursing	#	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
Behavioral Health	12- or 24-hour timed urine collection	12-lead electrocardiogram (ECG)	12-lead electrocardiogram (ECG), pediatric	15-lead electrocardiogram (ECG)	18-lead electrocardiogram (ECG)	2-hour timed urine collection, pediatric	24-hour timed urine collection using a pediatric urine collection bag, pediatric female	24-hour timed urine collection using a pediatric urine collection bag, pediatric male	24-hour timed urine collection, pediatric																		
Critical Care	Abdominal binder application	Abdominal girth measurement, neonatal	Abruptio placenta patient care	Accidental exposure to blood or body fluids, OR	Active hallucinations patient care	Acute dystonic reaction assessment and care	Admission	Admission of a patient with a history of drug abuse	Admission to floor, pediatric	Admission to intensive care unit	Admission to intensive care unit, pediatric	Admission, assisting with adjustment, long-term care	Admission, long-term care	Advance directives	Advance directives, long-term care	Advance directives, neurology											
My Account Page

Lippincott Procedures

Search Query
- **All Content**

Admin Tools | My Account | Lippincott Advisor

Browse All Documents

My Username and Password
- **Username:** carolyn.dalton@wolterskluwer.com
- **Password:** ******** (Edit)
- **Open Athens Username:** [not set] (Edit)

My Tests

Assigned Tests (2)

You have the following tests waiting: (click on the test’s name or “Take Test” to start the test).

<table>
<thead>
<tr>
<th>Discipline(s)</th>
<th>Test Name</th>
<th>View Procedure</th>
<th>Date Posted</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nursing</td>
<td>12-lead electrocardiogram (EKG), pediatric</td>
<td>View Procedure</td>
<td>01/24/2012</td>
<td></td>
</tr>
<tr>
<td>Nursing</td>
<td>Active hallucinations patient care</td>
<td>View Procedure</td>
<td>01/13/2012</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2013, Wolters Kluwer Health. License Agreement & Disclaimer
12-lead electrocardiogram (ECG), pediatric

In the standard ECG complex, made up of P-QRS-T, the QRS complex represents:
- atrial depolarization.
- atrial repolarization.
- ventricular repolarization.
- ventricular depolarization.

The standard 12-lead ECG uses a series of electrodes placed on the extremities and the chest wall. The 12 leads consist of:
- four standard bipolar limb leads; three unipolar augmented leads, and five unipolar precordial leads.
- three standard bipolar limb leads; six unipolar augmented leads, and six unipolar precordial leads.
- three standard bipolar limb leads; three unipolar augmented leads, and six unipolar precordial leads.
- six standard bipolar limb leads; three unipolar augmented leads, and three unipolar precordial leads.

When selecting sites for the placement of limb lead electrodes, use:
- bony areas.
- muscular areas.
- flat, fleshy areas.
- joints.

Electrocardiography is a test that:
- uses electrodes placed within the heart.
- creates electric currents on the body's surface.
Additional options

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Nursing</td>
<td>12- or 24-hour timed urine collection</td>
</tr>
<tr>
<td>Behavioral Health</td>
<td>12-lead electrocardiogram (ECG)</td>
</tr>
<tr>
<td>Critical Care</td>
<td>12-lead electrocardiogram (ECG), pediatric</td>
</tr>
<tr>
<td>Emergency</td>
<td>15-lead electrocardiogram (ECG)</td>
</tr>
<tr>
<td>Long-Term Care</td>
<td>16-lead electrocardiogram (ECG)</td>
</tr>
<tr>
<td>Maternal-Neonatal</td>
<td>2-hour timed urine collection, pediatric</td>
</tr>
<tr>
<td>Medical-Surgical</td>
<td>24-hour timed urine collection using a pediatric urine collection bag, pediatric female</td>
</tr>
<tr>
<td>Neonatal Critical Care</td>
<td>24-hour timed urine collection using a pediatric urine collection bag, pediatric male</td>
</tr>
<tr>
<td>Oncology</td>
<td>24-hour timed urine collection, pediatric</td>
</tr>
<tr>
<td>Pediatric</td>
<td>Abdominal binder application</td>
</tr>
<tr>
<td>Pediatric Critical Care</td>
<td>Abdominal girth measurement, neonatal</td>
</tr>
<tr>
<td>Perinatal</td>
<td>Abruptio placenta patient care</td>
</tr>
<tr>
<td>Pediatric</td>
<td>Accidental exposure to blood or body fluids, OR</td>
</tr>
<tr>
<td>Pediatric</td>
<td>Active hallucinations patient care</td>
</tr>
<tr>
<td>Pediatric</td>
<td>Acute dystonic reaction assessment and care</td>
</tr>
</tbody>
</table>

Admission

- Admission of a patient with a history of drug abuse
- Admission to floor, pediatric
- Admission to intensive care unit
- Admission to intensive care unit, pediatric
- Admission, assisting with adjustment, long-term care
- Admission, long-term care
- Advance directives
- Advance directives, long-term care
- Advance directives, neonatal
Lippincott Procedures
For Further Assistance

Technical Support
- Monday through Thursday, 8 AM to Midnight EST;
- Friday, 8 AM to 7 PM EST;
- Sunday, 4 PM to Midnight EST at:
 - 1-800-468-1128 option 4 or LNS-Support@wolterskluwer.com.